Age affects the contraction-induced mitochondrial redox response in skeletal muscle
نویسندگان
چکیده
منابع مشابه
Age affects the contraction-induced mitochondrial redox response in skeletal muscle
Compromised mitochondrial respiratory function is associated with advancing age. Damage due to an increase in reactive oxygen species (ROS) with age is thought to contribute to the mitochondrial deficits. The coenzyme nicotinamide adenine dinucleotide in its reduced (NADH) and oxidized (NAD(+)) forms plays an essential role in the cyclic sequence of reactions that result in the regeneration of ...
متن کاملChemerin-induced mitochondrial dysfunction in skeletal muscle
Chemerin is a novel adipocyte-derived factor that induces insulin resistance in skeletal muscle. However, the effect of chemerin on skeletal muscle mitochondrial function has received little attention. In the present study, we investigated whether mitochondrial dysfunction is involved in the pathogenesis of chemerin-mediated insulin resistance. In this study, we used recombinant adenovirus to e...
متن کاملSkeletal muscle contraction-induced vasodilation in the microcirculation
Maximal whole body exercise leads skeletal muscle blood flow to markedly increase to match metabolic demands, a phenomenon termed exercise hyperaemia that is accomplished by increasing vasodilation. However, local vasodilatory mechanisms in response to skeletal muscle contraction remain uncertain. This review highlights metabolic vasodilators released from contracting skeletal muscle, endotheli...
متن کاملAge-related functional changes and susceptibility to eccentric contraction-induced damage in skeletal muscle cell
Depending upon external loading conditions, skeletal muscles can either shorten, lengthen, or remain at a fixed length as they produce force. Fixed-end or isometric contractions stabilize joints and allow muscles to act as active struts during locomotion. Active muscles dissipate energy when they are lengthened by an external force that exceeds their current force producing capacity. These unac...
متن کاملSkeletal muscle phenotype affects fasting-induced mitochondrial oxidative phosphorylation flexibility in cold-acclimated ducklings.
Starvation is particularly challenging for endotherms that remain active in cold environments or during winter. The aim of this study was to determine whether fasting-induced mitochondrial coupling flexibility depends upon the phenotype of skeletal muscles. The rates of oxidative phosphorylation and mitochondrial efficiency were measured in pectoralis (glycolytic) and gastrocnemius (oxidative) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Physiology
سال: 2015
ISSN: 1664-042X
DOI: 10.3389/fphys.2015.00021